Multiplicative Zagreb indices of k-trees

Shaohui Wang
Directed by Bing Wei

November 2, 2013
Outline

- Introduction
Outline

- Introduction
 - k-trees
 - Zagreb Index and Multiplicative Zagreb Index
Introduction

- k-trees
- Zagreb Index and Multiplicative Zagreb Index

Our results
Outline

- Introduction
 - k-trees
 - Zagreb Index and Multiplicative Zagreb Index
- Our results
- Main proofs
Definition (Beineke and Pippert 1969)

The **k-tree**, denoted by T_n^k, for positive integers n, k with $n \geq k$, is defined recursively as follows:

The smallest k-tree is the k-clique K_k. If G is a k-tree with $n \geq k$ vertices and a new vertex v of degree k is added and joined to the vertices of a k-clique in G, then the obtained graph is a k-tree with $n + 1$ vertices.
Definition (Beineke and Pippert 1969)

The k-tree, denoted by T_n^k, for positive integers n, k with $n \geq k$, is defined recursively as follows:

The smallest k-tree is the k-clique K_k. If G is a k-tree with $n \geq k$ vertices and a new vertex v of degree k is added and joined to the vertices of a k-clique in G, then the obtained graph is a k-tree with $n + 1$ vertices.

Example (Building a 2-tree)

- Start with a 1-vertex graph.
- Add a new vertex of degree 2, and join it to the existing vertex.

Diagram:

1. **Initial Graph**: A single vertex.
2. **Updated Graph**: The initial vertex, with a new vertex added and joined to it.
The k-tree, denoted by T_n^k, for positive integers n, k with $n \geq k$, is defined recursively as follows:

The smallest k-tree is the k-clique K_k. If G is a k-tree with $n \geq k$ vertices and a new vertex v of degree k is added and joined to the vertices of a k-clique in G, then the obtained graph is a k-tree with $n + 1$ vertices.

Example (Building a 2-tree)
Definition (Beineke and Pippert 1969)

The *k-tree*, denoted by T_n^k, for positive integers n, k with $n \geq k$, is defined recursively as follows:

The smallest *k*-tree is the *k*-clique K_k. If G is a *k*-tree with $n \geq k$ vertices and a new vertex v of degree k is added and joined to the vertices of a *k*-clique in G, then the obtained graph is a *k*-tree with $n + 1$ vertices.

Example (Building a 2-tree)

![Diagram of a 2-tree](image-url)
Definition (Beineke and Pippert 1969)

The \(k \)-tree, denoted by \(T_n^k \), for positive integers \(n, k \) with \(n \geq k \), is defined recursively as follows:

The smallest \(k \)-tree is the \(k \)-clique \(K_k \). If \(G \) is a \(k \)-tree with \(n \geq k \) vertices and a new vertex \(v \) of degree \(k \) is added and joined to the vertices of a \(k \)-clique in \(G \), then the obtained graph is a \(k \)-tree with \(n + 1 \) vertices.

Example (Building a 2-tree)
Definition (Beineke and Pippert 1969)

The k-tree, denoted by T_n^k, for positive integers n, k with $n \geq k$, is defined recursively as follows:

The smallest k-tree is the k-clique K_k. If G is a k-tree with $n \geq k$ vertices and a new vertex v of degree k is added and joined to the vertices of a k-clique in G, then the obtained graph is a k-tree with $n + 1$ vertices.

Example (Building a 2-tree)

[Diagram of a 2-tree]
Definition (Beineke and Pippert 1969)

The k-tree, denoted by T_n^k, for positive integers n, k with $n \geq k$, is defined recursively as follows:

The smallest k-tree is the k-clique K_k. If G is a k-tree with $n \geq k$ vertices and a new vertex v of degree k is added and joined to the vertices of a k-clique in G, then the obtained graph is a k-tree with $n + 1$ vertices.

Example (Building a 2-tree)

[Diagram showing a 2-tree construction with labeled vertices and edges]
Definition

A vertex $v \in V(T_n^k)$ is called a k-simplicial vertex if v is a vertex of degree k whose neighbors form a k-clique of T_n^k.

In the following 2-tree, 5, 6, 7 are 2-simplicial vertices.
A vertex $v \in V(T_k^n)$ is called a k-simplicial vertex if v is a vertex of degree k whose neighbors form a k-clique of T_k^n.

In the following 2-tree, 5, 6, 7 are 2-simplicial vertices.
Let $S_1(T_n^k)$ be the set of all simplicial vertices of T_n^k, for $n \geq k + 2$, and set $S_1(K_k) = \phi$, $S_1(K_{k+1}) = \{v\}$, where v is any vertex of K_{k+1}.
Let $S_1(T_n^k)$ be the set of all simplicial vertices of T_n^k, for $n \geq k + 2$, and set $S_1(K_k) = \emptyset$, $S_1(K_{k+1}) = \{v\}$, where v is any vertex of K_{k+1}.

Let $G = G_0$, $G_i = G_{i-1} - v_i$, where v_i is a simplicial vertex of G_{i-1}, then $\{v_1, v_2...v_n\}$ is called a simplicial elimination ordering of the n-vertex graph G.
The \textit{k-path}, denoted by P^k_n, for positive integers n, k with $n \geq k$, is defined as follows:
Starting with a k-clique $G[\{v_1, v_2...v_k\}]$. For $i \in [k + 1, n]$, the vertex v_i is adjacent to vertices $\{v_{i-1}, v_{i-2}...v_{i-k}\}$ only.
The k-path, denoted by P_n^k, for positive integers n, k with $n \geq k$, is defined as follows:

Starting with a k-clique $G[\{v_1, v_2...v_k\}]$. For $i \in [k + 1, n]$, the vertex v_i is adjacent to vertices $\{v_{i-1}, v_{i-2}...v_{i-k}\}$ only.

Example (Building a 2-path)

1

2
The k-path, denoted by P_n^k, for positive integers n, k with $n \geq k$, is defined as follows:
Starting with a k-clique $G[\{v_1, v_2...v_k\}]$. For $i \in [k + 1, n]$, the vertex v_i is adjacent to vertices $\{v_{i-1}, v_{i-2}...v_{i-k}\}$ only.

Example (Building a 2-path)
The \textbf{k-path}, denoted by P_n^k, for positive integers n, k with $n \geq k$, is defined as follows:
Starting with a k-clique $G[\{v_1, v_2, \ldots, v_k\}]$. For $i \in [k + 1, n]$, the vertex v_i is adjacent to vertices $\{v_{i-1}, v_{i-2}, \ldots, v_{i-k}\}$ only.

\begin{center}
\textbf{Example (Building a 2-path)}
\end{center}

\begin{figure}
\centering
\includegraphics[width=0.5\textwidth]{example_graph}
\end{figure}
The **k-path**, denoted by P^k_n, for positive integers n, k with $n \geq k$, is defined as follows:

Starting with a k-clique $G[\{v_1, v_2...v_k\}]$. For $i \in [k + 1, n]$, the vertex v_i is adjacent to vertices $\{v_{i-1}, v_{i-2}...v_{i-k}\}$ only.
The k-path, denoted by P_n^k, for positive integers n, k with $n \geq k$, is defined as follows:

Starting with a k-clique $G[\{v_1, v_2...v_k\}]$. For $i \in [k + 1, n]$, the vertex v_i is adjacent to vertices $\{v_{i-1}, v_{i-2}...v_{i-k}\}$ only.

Example (Building a 2-path)
The *k-path*, denoted by P_n^k, for positive integers n, k with $n \geq k$, is defined as follows:
Starting with a k-clique $G[\{v_1, v_2, \ldots, v_k\}]$. For $i \in [k + 1, n]$, the vertex v_i is adjacent to vertices $\{v_{i-1}, v_{i-2}, \ldots, v_{i-k}\}$ only.

Example (Building a 2-path)
The \textit{k-star}, denoted by $S_{k,n-k}$, for positive integers n, k with $n \geq k$, is defined as follows:

Starting with a k-clique $G[\{v_1, v_2...v_k\}]$ and an independent set S with $|S| = n - k$. For $i \in [k + 1, n]$, the vertex v_i is adjacent to vertices $\{v_1, v_2...v_k\}$ only.
The **k-star**, denoted by $S_{k,n-k}$, for positive integers n, k with $n \geq k$, is defined as follows:

Starting with a k-clique $G[\{v_1, v_2...v_k\}]$ and an independent set S with $|S| = n - k$. For $i \in [k + 1, n]$, the vertex v_i is adjacent to vertices $\{v_1, v_2...v_k\}$ only.

Example (Building a 2-star)

![Diagram of a 2-star with vertices 1 and 2 connected]

Shaohui Wang

Multiplicative Zagreb indices of k-trees
The **k-star**, denoted by $S_{k,n-k}$, for positive integers n, k with $n \geq k$, is defined as follows:

Starting with a k-clique $G[\{v_1, v_2...v_k\}]$ and an independent set S with $|S| = n - k$. For $i \in [k + 1, n]$, the vertex v_i is adjacent to vertices $\{v_1, v_2...v_k\}$ only.

Example (Building a 2-star)
The k-star, denoted by $S_{k,n-k}$, for positive integers n, k with $n \geq k$, is defined as follows:
Starting with a k-clique $G[\{v_1, v_2...v_k\}]$ and an independent set S with $|S| = n - k$. For $i \in [k + 1, n]$, the vertex v_i is adjacent to vertices $\{v_1, v_2...v_k\}$ only.

Example (Building a 2-star)
The k-star, denoted by $S_{k,n-k}$, for positive integers n, k with $n \geq k$, is defined as follows:
Starting with a k-clique $G[\{v_1, v_2...v_k\}]$ and an independent set S with $|S| = n - k$. For $i \in [k + 1, n]$, the vertex v_i is adjacent to vertices $\{v_1, v_2...v_k\}$ only.

Example (Building a 2-star)

![Diagram of a 2-star with vertices 1, 2, 3, 4, 5, and edges connecting them accordingly.]
The k-star, denoted by $S_{k,n-k}$, for positive integers n, k with $n \geq k$, is defined as follows: Starting with a k-clique $G[\{v_1, v_2...v_k\}]$ and an independent set S with $|S| = n - k$. For $i \in [k + 1, n]$, the vertex v_i is adjacent to vertices $\{v_1, v_2...v_k\}$ only.
The \textit{k-star}, denoted by $S_{k,n-k}$, for positive integers n, k with $n \geq k$, is defined as follows:

Starting with a k-clique $G[\{v_1, v_2...v_k\}]$ and an independent set S with $|S| = n - k$. For $i \in [k + 1, n]$, the vertex v_i is adjacent to vertices $\{v_1, v_2...v_k\}$ only.

Example (Building a 2-star)

[Diagram of a 2-star with vertices labeled 1 to 7 and edges connecting them as described in the definition.]

Shaohui Wang

Multiplicative Zagreb indices of k-trees
Hyper pendent edge

Definition

If \(w(G - S) \leq 2 \) for any \(k \)-clique \(G[S] \) of \(T_n^k \), we say \(T_n^k \) is a hyper pendent edge; If there exists a \(k \)-clique \(G[S] \) with \(w(G - S) \geq 3 \), let \(C \) be a component of \(T_n^k - S \) and contain a unique vertex belonging to \(S_1(G) \), then we say that \(G[V(S) \cup V(C)] \) is a hyper pendent edge of \(T_n^k \), denoted by \(\mathcal{P} \).
Hyper pendent edge

Definition

If \(w(G - S) \leq 2 \) for any \(k \)-clique \(G[S] \) of \(T_n^k \), we say \(T_n^k \) is a hyper pendent edge; If there exists a \(k \)-clique \(G[S] \) with \(w(G - S) \geq 3 \), let \(C \) be a component of \(T_n^k - S \) and contain a unique vertex belonging to \(S_1(G) \), then we say that \(G[V(S) \cup V(C)] \) is a hyper pendent edge of \(T_n^k \), denoted by \(P \).

- 2-tree: \(S = \{1, 2\} \), \(C = \{3, 4, 5, 6, 7\} \)
Zagreb Indices

Definition

The first and second **Zagreb indices** of the graph $G = (V, E)$ are defined as

$$M_1 = \sum_{v \in V(G)} d(v)^2; \quad M_2 = \sum_{uv \in E(G)} d(u)d(v).$$
Zagreb Indices

Definition

The first and second **Zagreb indices** of the graph $G = (V, E)$ are defined as

\[M_1 = \sum_{v \in V(G)} d(v)^2; \quad M_2 = \sum_{uv \in E(G)} d(u)d(v). \]

Let P_n, S_n be the path and star on n vertices, respectively, then

\[M_1(P_n) = 4n - 6, \quad M_1(S_n) = n^2 - n; \]
\[M_2(P_n) = 4n - 8, \quad M_2(S_n) = n^2 - 2n + 1. \]
Theorem (Das and Gutman 2004)

Let T be any tree on n vertices, then

$$M_1(P_n) \leq M_1(T) \leq M_1(S_n)$$
$$M_2(P_n) \leq M_2(T) \leq M_2(S_n)$$

the left-side and the right-side equalities are reached if and only if $T \cong P_n$ and $T \cong S_n$, respectively.
Theorem (Das and Gutman 2004)

Let T be any tree on n vertices, then

\[
M_1(P_n) \leq M_1(T) \leq M_1(S_n)
\]

\[
M_2(P_n) \leq M_2(T) \leq M_2(S_n)
\]

The left-side and the right-side equalities are reached if and only if $T \cong P_n$ and $T \cong S_n$, respectively.

Theorem (Estes and Wei 2012)

Let T^k_n be any k-tree on n vertices, then

\[
M_1(P^k_n) \leq M_1(T^k_n) \leq M_1(S_{k,n-k})
\]

\[
M_2(P^k_n) \leq M_2(T^k_n) \leq M_2(S_{k,n-k})
\]

The left-side and the right-side equalities are reached if and only if $T^k_n \cong P^k_n$ and $T^k_n \cong S_{k,n-k}$, respectively.
The first and second **Multiplicative Zagreb indices** of the graph $G = (V, E)$ are defined as

\[
\prod_1(G) = \prod_{v \in V(G)} d(v)^2; \quad \prod_2(G) = \prod_{uv \in E(G)} d(u)d(v).
\]
Definition (Todeschini, Ballabio, Consonni 2010)

The first and second **Multiplicative Zagreb indices** of the graph \(G = (V, E) \) are defined as

\[
\prod_1(G) = \prod_{v \in V(G)} d(v)^2; \quad \prod_2(G) = \prod_{uv \in E(G)} d(u)d(v).
\]

Theorem (Gutman 2011)

Let \(n \geq 5 \) and \(T_n \) be any tree with \(n \) vertices, then

\[
\prod_1(S_n) \leq \prod_1(T_n) \leq \prod_1(P_n);
\]

\[
\prod_2(P_n) \leq \prod_2(T_n) \leq \prod_2(S_n).
\]
Definition

The first **generalized** and second **Multiplicative Zagreb indices** of graph $G = (V, E)$ are defined as follows: for any real number $c > 0$,

\[
\prod_{1,c}(G) = \prod_{v \in V(G)} d(v)^c; \\
\prod_2(G) = \prod_{uv \in E(G)} d(u)d(v) = \prod_{v \in V(G)} d(v)^{d(v)}.
\]
Our results

Theorem

Let T_k^n be a k-tree on $n \geq k$ vertices, then

\[(1) \prod_{1,c} (S_{k,n-k}) \leq \prod_{1,c} (T_k^n) \leq \prod_{1,c} (P_k^n)\]

\[(2) \prod_{2} (P_k^n) \leq \prod_{2} (T_k^n) \leq \prod_{2} (S_{k,n-k})\]

For (1), the left-side and the right-side equalities are reached if and only if $T_k^n \cong S_{k,n-k}$ and $T_k^n \cong P_k^n$, respectively; For (2), the left-side and the right-side equalities are reached if and only if $T_k^n \cong P_k^n$ and $T_k^n \cong S_{k,n-k}$, respectively.
The function \(f(x) = \frac{x}{x + m} \) is strictly increasing for \(x \in [0, \infty) \), where \(m \) is a positive integer.

The function \(g(x) = \frac{x^x}{(x + m)^{x+m}} \) is strictly decreasing for \(x \in [0, \infty) \), where \(m \) is a positive integer.
We first show that $\prod_{1,c}(T_n^k) \geq \prod_{1,c}(S_{k,n-k})$,
$\prod_{2}(T_n^k) \leq \prod_{2}(S_{k,n-k})$, it suffices to prove the following lemma.

Lemma (1)

For any k-tree $G \not\cong S_{k,n-k}$, let $u \in S_2$, $N(u) \cap S_1 = \{v_1, v_2...v_s\}$, where $s \geq 1$ is an integer, then

(i) For any i with $1 \leq i \leq s$, there exists a vertex $v \in N(u) - \{v_1, v_2...v_s\}$ of degree at least k in $G[V(G) - \{v_1, v_2...v_s\}]$ such that $vv_i \not\in E(G)$.

(ii) There exists a k-tree G^* such that $\prod_{1,c}(G^*) < \prod_{1,c}(G)$ and $\prod_{2}(G^*) > \prod_{2}(G)$.
Proof of (i)

Let $G' = G \setminus \{v_1, v_2, \ldots, v_s\}$ and $S = N(u) \setminus \{v_1, v_2, \ldots, v_s\}$, we obtain that $d_{G'}(u) = |S| = k$ and $G[S]$ is a k-clique by $u \in S$. Since $G \not\sim S_k n$, $d_{G'}(v) \geq k$ for all $v \in S$. And by the facts that $N(v_i) \subseteq (N(u) \setminus \{v_1, v_2, \ldots, v_s\}) \cup \{u\}$ with $|N(v_i)| = k$ and $|(N(u) \setminus \{v_1, v_2, \ldots, v_s\}) \cup \{u\}| = k + 1$, we have that for any $i \in [1, s]$ there exists a vertex $v \in S$ such that $v v_i / \in E(G)$.

Shaohui Wang

Multiplicative Zagreb indices of k-trees
Proof of (i)

Let $G' = G[V(G) - \{v_1, v_2, ..., v_s\}]$ and $S = N(u) - \{v_1, v_2, ..., v_s\}$, we obtain that $d_{G'}(u) = |S| = k$ and $G[S]$ is a k-clique by $u \in S_2$. Since $G \not\cong S_n^k$, $d_{G'}(v) \geq k$ for all $v \in S$. And by the facts that $N(v_i) \subseteq (N(u) - \{v_1, v_2, ..., v_s\}) \cup \{u\}$ with $|N(v_i)| = k$ and $|((N(u) - \{v_1, v_2, ..., v_s\}) \cup \{u\})| = k + 1$, we have that for any $i \in [1, s]$ there exists a vertex $v \in S$ such that $vv_i \notin E(G)$.
Proof of (ii)

Choose v_1, there is a vertex $v \in S$ with $d_{G'}(v) \geq k$. If $d_{G'}(v) = k$, G' is a $k + 1$-clique.

Let $x \in S$ be the vertex such that $d(x) = \min_{v \in S} \{d(v)\}$, and let $v_t x \in E(G)$, $v_t y \notin E(G)$ for some $t \in [1, s]$ and $y \in S$, that is, $d(x) - 1 < d(y)$. Denote $G_0 = G[V(G) - \{x, y\}]$.

Construct a new graph G^* such that $V(G^*) = V(G)$, and $E(G^*) = E(G) - \{v_t x\} + \{v_t y\}$.

\[\text{Proof of (ii)} \]

\[
\begin{align*}
\text{Choose } v_1, \text{ there is a vertex } v \in S \text{ with } d_{G'}(v) \geq k. \text{ If } \\
d_{G'}(v) = k, \text{ } G' \text{ is a } k + 1\text{-clique.} \\
\text{Let } x \in S \text{ be the vertex such that } d(x) = \min_{v \in S} \{d(v)\}, \text{ and } \\
\text{let } v_t x \in E(G), \text{ } v_t y \notin E(G) \text{ for some } t \in [1, s] \text{ and } y \in S, \text{ that is, } \\
d(x) - 1 < d(y). \text{ Denote } G_0 = G[V(G) - \{x, y\}]. \\
\text{Construct a new graph } G^* \text{ such that } V(G^*) = V(G), \text{ and } \\
E(G^*) = E(G) - \{v_t x\} + \{v_t y\}.
\end{align*}
\]
Proof of (ii)

Choose v_1, there is a vertex $v \in S$ with $d_{G'}(v) \geq k$. If $d_{G'}(v) = k$, G' is a $k + 1$-clique.

Let $x \in S$ be the vertex such that $d(x) = \min_{v \in S} \{d(v)\}$, and let $v_t x \in E(G)$, $v_t y \notin E(G)$ for some $t \in [1, s]$ and $y \in S$, that is, $d(x) - 1 < d(y)$. Denote $G_0 = G[V(G) - \{x, y\}]$.

Construct a new graph G^* such that $V(G^*) = V(G)$, and $E(G^*) = E(G) - \{v_t x\} + \{v_t y\}$.
The function \(f(x) = \frac{x}{x + m} \) is strictly increasing for \(x \in [0, \infty) \), where \(m \) is a positive integer.

\[
\frac{\prod_{1,c}(G)}{\prod_{1,c}(G^*)} = \frac{[\prod_{w \in V(G_0)} d(w)^c] d(y)^c d(x)^c}{[\prod_{w \in V(G_0)} d(w)^c] [d(y) + 1]^c [d(x) - 1]^c}
\]

\[
= \frac{[d(y) + 1]^c [d(x) - 1]^c}{d(y)^c d(x)^c}
\]

\[
= \frac{[d(y) + 1]^c}{[d(x) - 1]^c}
\]

\[
> 1.
\]
The function \(g(x) = \frac{x^x}{(x + m)^{x+m}} \) is strictly decreasing for \(x \in [0, \infty) \), where \(m \) is a positive integer.

\[
\frac{\prod_2(G)}{\prod_2(G^*)} = \frac{\prod_{w \in V(G_0)} d(w)^{d(w)} d(y)^{d(y)} d(x)^{d(x)}}{\prod_{w \in V(G_0)} d(w)^{d(w)} [d(y) + 1]^{d(y)+1} [d(x) - 1]^{d(x)-1}}
\]
\[
= \frac{[d(y) + 1]^{d(y)+1} [d(x) - 1]^{d(x)-1}}{d(y)^{d(y)} d(x)^{d(x)}}
\]
\[
< 1.
\]
Proof of (ii)

If $d_{G'}(v) \geq k + 1$, reorder the subindices of $\{v_1, v_2...v_s\}$ so that $vv_i \notin E(G)$ with $i \in [1, s_1]$, where $s_1 \leq s$.

Construct a new graph G^* such that $V(G^*) = V(G)$, and $E(G^*) = E(G) - \{uv_i\} + \{vv_i\}$, for all $i \in [1, s_1]$

Since $d(v) \geq k + s - s_1 + 1$ and $d(u) = k + s$, then $d(v) \geq d(u) - s_1 + 1$.
Proof of (ii)

If \(d_{G'}(v) \geq k + 1 \), reorder the subindices of \(\{v_1, v_2...v_s\} \) so that \(vv_i \notin E(G) \) with \(i \in [1, s_1] \), where \(s_1 \leq s \).

Construct a new graph \(G^* \) such that \(V(G^*) = V(G) \), and \(E(G^*) = E(G) - \{uv_i\} + \{vv_i\} \), for all \(i \in [1, s_1] \).

Since \(d(v) \geq k + s - s_1 + 1 \) and \(d(u) = k + s \), then \(d(v) \geq d(u) - s_1 + 1 \).
\[
\frac{\prod_{1,c}(G)}{\prod_{1,c}(G^*)} = \frac{d(v)^c d(u)^c}{[d(v) + s_1]^c [d(u) - s_1]^c} = \frac{[d(v)^c]}{[d(v)+s_1]^c} = \frac{[d(u)-s_1]^c}{[d(u)]^c} > 1.
\]

\[
\frac{\prod_{2}(G)}{\prod_{2}(G^*)} = \frac{d(v)^{d(v)} d(u)^{d(u)}}{[d(v) + s_1]^{d(v)}+s_1 [d(u) - s_1]^{d(u)}-s_1} = \frac{[d(v)^{d(v)}]}{[d(v)+s_1]^{d(v)}+s_1} = \frac{[d(u)-s_1]^{d(u)}-s_1}{[d(u)]^{d(u)}} < 1.
\]
The proof of $\prod_{1,c}(T^k_n) \leq \prod_{1,c}(P^k_n)$ and $\prod_2(T^k_n) \geq \prod_2(P^k_n)$:
The proof of $\prod_{1,c}(T^k_n) \leq \prod_{1,c}(P^k_n)$ and $\prod_{2}(T^k_n) \geq \prod_{2}(P^k_n)$:

- Let G be a k-tree, assume that either $\prod_{1,c}(G)$ attains the maximum or $\prod_{2}(G)$ attains the minimum.
Sketch of the Proof

The proof of $\prod_{1,c}(T_n^k) \leq \prod_{1,c}(P_n^k)$ and $\prod_2(T_n^k) \geq \prod_2(P_n^k)$:

- Let G be a k-tree, assume that either $\prod_{1,c}(G)$ attains the maximum or $\prod_2(G)$ attains the minimum.
- By contradiction, we can show that every hyper pendent edge is a k-path.
The proof of $\prod_{1,c}(T_k^n) \leq \prod_{1,c}(P_k^n)$ and $\prod_{2}(T_k^n) \geq \prod_{2}(P_k^n)$:

- Let G be a k-tree, assume that either $\prod_{1,c}(G)$ attains the maximum or $\prod_{2}(G)$ attains the minimum.
- By contradiction, we can show that every hyper pendent edge is a k-path.
- By induction, we can prove that $|S_1(G)| = 2$, thus, P_k^n attains the maximal $\prod_{1,c}(G)$ and minimal $\prod_{2}(G)$.
Thank you