		Scores	Scores	
		1.		
		2.		
		3.		
MA 2733 Examination 2 November 17 2015		4.		
Name	Section	5.		
		Total:		

5 T/F, several long answer. 50 points.

- General Instructions: Please answer the following, without use of calculators. You may refer to a 3x5 card, but no other notes. Correct answers without correct supporting work may not receive full credit (excluding the True/False section). You may use the back of each page for additional answer space (please clearly indicate if you have done so), or scratch work.
- Mississippi State University Honor Code: "As a Mississippi State University student I will conduct myself with honor and integrity at all times. I will not lie, cheat, or steal, nor will I accept the actions of those who do."

Signature _____

- 1. True/False. Enter T or F in each blank. A correct answer is worth 2 points, a blank space is worth 0 points, and a wrong answer is worth -2 points. (Your total on this problem will be rounded up to zero if necessary.)
 - (a) _____ If $\vec{\mathbf{a}}$ and $\vec{\mathbf{b}}$ are vectors in \mathbb{R}^3 with $\vec{\mathbf{a}} \cdot \vec{\mathbf{b}} = 0$, then $\vec{\mathbf{a}}$ is the normal vector to some plane containing $\vec{\mathbf{b}}$.
 - (b) The function $f(x) = \sqrt{1-x}$ has a Taylor series around a = 0.
 - (c) _____ If $\vec{\mathbf{a}}$, $\vec{\mathbf{b}}$, and $\vec{\mathbf{c}}$ are vectors in \mathbb{R}^3 so that $\vec{\mathbf{a}}$ and $\vec{\mathbf{b}}$ are orthogonal, and $\vec{\mathbf{a}}$ and $\vec{\mathbf{c}}$ are orthogonal, then necessarily $\vec{\mathbf{a}}$ and $\vec{\mathbf{b}} + \vec{\mathbf{c}}$ are orthogonal.
 - (d) _____ The vector function $\vec{\mathbf{r}}(t) = \langle \sin t, \sqrt{t^2 + 1}, |t| \rangle$ is continuous at t, for all values of t on $(-\infty, \infty)$.
 - (e) _____ For any vectors $\vec{\mathbf{a}}$ and $\vec{\mathbf{b}}$ in \mathbb{R}^3 , it holds that $\vec{\mathbf{a}} \times \vec{\mathbf{b}} = (\vec{\mathbf{a}} + \vec{\mathbf{b}}) \times \vec{\mathbf{b}}$.

- 2. Geometry of lines, planes, and curves
 - (a) (4 points) Find an equation of the form ax + by + cz = d for the plane containing the points (1, 0, 0), (0, 2, 0), and (0, 0, 1).

(b) (4 points) Determine whether the points lie all on a line, all on a plane, or neither: (1,1,1), (2,2,4), (4,2,2), (2,1,2).

(c) (4 points) Find the vector equation of a line that passes through the point (0,0,1) and that is orthogonal to the plane 2x - 2y + z = 3.

(d) (4 points) If
$$\vec{\mathbf{r}}(t) = \left\langle 2t+1, \frac{\cos t - 1}{t}, \frac{\sin^2 t}{t^2} \right\rangle$$
, then find $\lim_{t \to 0} \vec{\mathbf{r}}(t)$.

3. (6 points) Consider the surface $z = x^2 - \frac{y^2}{4}$.

- (a) Graph its traces in planes x = 0, x = 1, and x = 2 (all on the same axes).
- (b) Graph its traces in planes y = 0, y = 1, and y = 2 (all on the same axes).

- 4. Power series representations
 - (a) (6 points) Find a power series representation for $x^4 \cos(\sqrt{2} \cdot x^2)$. To receive full credit, isolate the powers of x in your series.

(b) (6 points) Find a power series representation for $\frac{3x}{x^2 - x - 2}$. To receive full credit, isolate the powers of x in your series. Hint: partial fractions!

5. (6 points) The "explain" problem Using Taylor's Coefficients Theorem directly, find the Taylor series around a = 0for $f(x) = e^{-2x+1}$.