1. (a) How many vectors are there that are orthogonal to $\langle 1, 2 \rangle$ and have length 1?

(b) How many vectors are there that are orthogonal to (1,2,3) and have length 1?

(c) Find $\operatorname{proj}_{\mathbf{i}}\langle 1, 2, 3 \rangle$ and $\operatorname{proj}_{\langle 1, 2, 3 \rangle} \mathbf{i}$.

- 2. (a) If $\vec{\mathbf{a}}$ and $\vec{\mathbf{b}}$ are orthogonal, then $\operatorname{proj}_{\vec{\mathbf{a}}}\vec{\mathbf{b}}$ is which of the following? a) $\vec{\mathbf{a}}$ b) $\vec{\mathbf{b}}$ c) $\vec{\mathbf{a}} + \vec{\mathbf{b}}$ d) $\vec{\mathbf{a}} - \vec{\mathbf{b}}$ e) $\vec{\mathbf{0}}$
 - (b) If \vec{a} and \vec{b} are parallel, then $\text{proj}_{\vec{a}}\vec{b}$ is which of the following? a) \vec{a} b) \vec{b} c) $\vec{a} + \vec{b}$ d) $\vec{a} - \vec{b}$ e) $\vec{0}$

3. Suppose that $\vec{\mathbf{v}}$ and $\vec{\mathbf{u}}$ are vectors, and that $\vec{\mathbf{v}} + \vec{\mathbf{u}}$ is orthogonal to $\vec{\mathbf{v}} - \vec{\mathbf{u}}$. Show that $\|\vec{\mathbf{v}}\| = \|\vec{\mathbf{u}}\|$.